Icon Animation Blend Spaces without Triangulation

 

Icon Quaternion Weighted Average

 

Icon BVHView

 

Icon Dead Blending Node in Unreal Engine

 

Icon Propagating Velocities through Animation Systems

 

Icon Cubic Interpolation of Quaternions

 

Icon Dead Blending

 

Icon Perfect Tracking with Springs

 

Icon Creating Looping Animations from Motion Capture

 

Icon My Favourite Things

 

Icon Inertialization Transition Cost

 

Icon Scalar Velocity

 

Icon Tags, Ranges and Masks

 

Icon Fitting Code Driven Displacement

 

Icon atoi and Trillions of Whales

 

Icon SuperTrack: Motion Tracking for Physically Simulated Characters using Supervised Learning

 

Icon Joint Limits

 

Icon Code vs Data Driven Displacement

 

Icon Exponential Map, Angle Axis, and Angular Velocity

 

Icon Encoding Events for Neural Networks

 

Icon Visualizing Rotation Spaces

 

Icon Spring-It-On: The Game Developer's Spring-Roll-Call

 

Icon Interviewing Advice from the Other Side of the Table

 

Icon Saguaro

 

Icon Learned Motion Matching

 

Icon Why Can't I Reproduce Their Results?

 

Icon Latinendian vs Arabendian

 

Icon Machine Learning, Kolmogorov Complexity, and Squishy Bunnies

 

Icon Subspace Neural Physics: Fast Data-Driven Interactive Simulation

 

Icon Software for Rent

 

Icon Naraleian Caterpillars

 

Icon The Scientific Method is a Virus

 

Icon Local Minima, Saddle Points, and Plateaus

 

Icon Robust Solving of Optical Motion Capture Data by Denoising

 

Icon Simple Concurrency in Python

 

Icon The Software Thief

 

Icon ASCII : A Love Letter

 

Icon My Neural Network isn't working! What should I do?

 

Icon Phase-Functioned Neural Networks for Character Control

 

Icon 17 Line Markov Chain

 

Icon 14 Character Random Number Generator

 

Icon Simple Two Joint IK

 

Icon Generating Icons with Pixel Sorting

 

Icon Neural Network Ambient Occlusion

 

Icon Three Short Stories about the East Coast Main Line

 

Icon The New Alphabet

 

Icon "The Color Munifni Exists"

 

Icon A Deep Learning Framework For Character Motion Synthesis and Editing

 

Icon The Halting Problem and The Moral Arbitrator

 

Icon The Witness

 

Icon Four Seasons Crisp Omelette

 

Icon At the Bottom of the Elevator

 

Icon Tracing Functions in Python

 

Icon Still Things and Moving Things

 

Icon water.cpp

 

Icon Making Poetry in Piet

 

Icon Learning Motion Manifolds with Convolutional Autoencoders

 

Icon Learning an Inverse Rig Mapping for Character Animation

 

Icon Infinity Doesn't Exist

 

Icon Polyconf

 

Icon Raleigh

 

Icon The Skagerrak

 

Icon Printing a Stack Trace with MinGW

 

Icon The Border Pines

 

Icon You could have invented Parser Combinators

 

Icon Ready for the Fight

 

Icon Earthbound

 

Icon Turing Drawings

 

Icon Lost Child Announcement

 

Icon Shelter

 

Icon Data Science, how hard can it be?

 

Icon Denki Furo

 

Icon In Defence of the Unitype

 

Icon Maya Velocity Node

 

Icon Sandy Denny

 

Icon What type of Machine is the C Preprocessor?

 

Icon Which AI is more human?

 

Icon Gone Home

 

Icon Thoughts on Japan

 

Icon Can Computers Think?

 

Icon Counting Sheep & Infinity

 

Icon How Nature Builds Computers

 

Icon Painkillers

 

Icon Correct Box Sphere Intersection

 

Icon Avoiding Shader Conditionals

 

Icon Writing Portable OpenGL

 

Icon The Only Cable Car in Ireland

 

Icon Is the C Preprocessor Turing Complete?

 

Icon The aesthetics of code

 

Icon Issues with SDL on iOS and Android

 

Icon How I learned to stop worrying and love statistics

 

Icon PyMark

 

Icon AutoC Tools

 

Icon Scripting xNormal with Python

 

Icon Six Myths About Ray Tracing

 

Icon The Web Giants Will Fall

 

Icon PyAutoC

 

Icon The Pirate Song

 

Icon Dear Esther

 

Icon Unsharp Anti Aliasing

 

Icon The First Boy

 

Icon Parallel programming isn't hard, optimisation is.

 

Icon Skyrim

 

Icon Recognizing a language is solving a problem

 

Icon Could an animal learn to program?

 

Icon RAGE

 

Icon Pure Depth SSAO

 

Icon Synchronized in Python

 

Icon 3d Printing

 

Icon Real Time Graphics is Virtual Reality

 

Icon Painting Style Renderer

 

Icon A very hard problem

 

Icon Indie Development vs Modding

 

Icon Corange

 

Icon 3ds Max PLY Exporter

 

Icon A Case for the Technical Artist

 

Icon Enums

 

Icon Scorpions have won evolution

 

Icon Dirt and Ashes

 

Icon Lazy Python

 

Icon Subdivision Modelling

 

Icon The Owl

 

Icon Mouse Traps

 

Icon Updated Art Reel

 

Icon Tech Reel

 

Icon Graphics Aren't the Enemy

 

Icon On Being A Games Artist

 

Icon The Bluebird

 

Icon Everything2

 

Icon Duck Engine

 

Icon Boarding Preview

 

Icon Sailing Preview

 

Icon Exodus Village Flyover

 

Icon Art Reel

 

Icon LOL I DREW THIS DRAGON

 

Icon One Cat Just Leads To Another

AutoC Tools

Created on June 3, 2012, 9:21 p.m.

About

Recently I brushed up another version of my AutoC libraries - this time for Lua. On first impressions Lua looks quite odd (indicies start from 1?! Hash symbol isn't for comments?! Explicit local variable declaration?!) but really these are minor details and at whole it is a fantastic little language. It was very fun to work with.

With the AutoC tools now working well across two languages I thought I would give a short overview on how they work because at first glance I was hoping it would be indistinguishable from magic. I wont go over it in much detail, but I'll try to explain some of the more interesting aspects.

 

Types

Standard C has no runtime introspection, so at the heart of any system for interaction with dynamically typed programming languages is a method for storing and inspecting type information at runtime.

And at the heart of any runtime type system is a type-id. To get the type-ids of functions and stucts I make the programmer declare the types of the functions and structures via a set of simple macros. These macros use the stringification operation to feed a string into a hashing function. Any autoc macro which takes raw type tokens does this stringification before passing them into the hashing function, which returns a type-id I can use in the internals of the system.

 

/* A typical PyAutoC Registration macro */
#define PyAutoStruct_Register(type) PyAutoStruct_Register_TypeId(PyTypeId(type))

/* The stringification macro */
#define PyTypeId(type) PyAutoType_Register(#type, sizeof(type))

/* The Definition of the type hashing function */
PyAutoType PyAutoType_Register(char* type, int size);

 

The hashing function is nothing special. It simply returns an auto-incrementing integer for each new unique string it encounters. While this means that the actual type-id for a type may differ per run, it does ensure that the type-id will always remain the same for identical types in the same run. This was enough for my purposes. With a little macro trickery we can even ensure that the programmer always supplies valid types which is great for typos and argument misorderings.

This system also allows me to store type names and type sizes in a table. This is useful for other parts of the system including making stack space when function calling and printing readable error messages.

 

Conversions

With some type information avaliable at runtime I could set up a system to create associations between C types and (Python/Lua) types. For Python this meant creating functions converting between C types and PyObjects and in Lua this meant creating functions for pushing and interpriting c types on and off the Lua stack. I could use a void pointer in C to reference a generic location for the type conversion functions to act upon.

The scripting APIs generally provided functions for converting the native c types out of the box, so these just needed to be wrapped and associated with their appropriate c type name/id - but more importantly the system allowed users to write their own conversion functions and register their own types. This was an essential step for making the whole system programmable and extendable and it essentially overcomes the fact that overloading or template programming is missing from vanilla C. Using a void pointer and the type information previously gathered we could now created an interface for proper conversion between generic types.

 

Structs

With this system it is now possible to allow the scripting language access to data in c variables, and via simple extension - structs. This can just be considered an extension of the automatic conversion functionality. Users can register structs and their members. Using these registration macros the member name (as a string), offset and type-id can all be recorded.

Using the member name as a string, this information can then be looked up and used to provide a pointer to the struct member in memory, as well as the appropriate type conversion functions to apply to it.

 

Functions

This is the final step in the system and by far the most complicated. At first it seems like it should be easy - providing the user has registered a function, we can look up all the information we need with no problem at runtime. We can get a pointer to the function we want to call. For each argument we can get the size, count, and even the appropriate conversion function. Using these conversion functions we can even extract the raw C data we want to call the function with.

Yet C fails us at the final hurdle. There is no library function which we can call which looks like this.

 

void call_function(void* func_ptr, void* return_data, void* arg_data, int arg_data_size);

 

The issue is that the way in which a function is called is not as black and white as C might make it appear. It isn't just a case of just copying a block of argument data from one place to another. It is not something that can be easily performed at runtime and it requires detailed work by the compiler/linker. In short, the calling convention is platform independant, complex, and there are many ways in which data is pushed and pulled off the program stack.

So is it impossible? Well we still have all the information we need. Perhaps we will have to copy some aspects of what the compiler does but there should still be no reason why it isn't conceptually possible. So I did some research into calling conventions and looked into programming the call via assembly. Unfortunately this path ultimately looked like it would be a dead end. It was becoming very complicated and using assembly to perform the call would essentially throw away any real idea of portability that might have existed. Not to mention it would introduce a bunch of subtle and complex bugs which I wouldn't have the experience to look over.

I then realized that I could essentially overcome this issue altogether if I could find a way to wrap a function in my own calling convention defined in C. More specifically, it would work if I could find a way to transform a function of any type into to a function of a single specific type:

 

void wrapped_function(void* out, void* args);

 

Any function of this specific type could be called using all the runtime data I had gathered. And provided it semantically did what was intended - everything would work perfectly! So the final trick was in this transformation.

I'd already decided one of my goals was to leave the existing source unedited so doing a source transformation, although easy, wasn't really an option. Luckily it turns out that this particlar transformation is possible using only macros and nested function declarations. In general, if we assume data is stacked compactly and in a FIFO order then we can imagine the transformation macro looking something like this:

 

ret_t function(arg0_t, arg1_t, arg2_t, ...);

/* == Transforms To ==> */

void wrapped_function(void* out, void* args) {
  arg0_t a0 = *(arg0_t*)args;
  arg1_t a1 = *(arg1_t*)(args + sizeof(arg0_t));
  arg2_t a2 = *(arg2_t*)(args + sizeof(arg0_t) + sizeof(arg1_t));
  ...
  *(ret_t*)out = function(a0, a1, a2, ...);
}

 

The C macro system can express such a transformation with two limitations. Firstly the varadic macro system is not powerful enough to properly express the transformation needed on each argument and secondly if a function has return type of void then writing to the "out" variable is invalid syntax. Both of these issues can be overcome by writing variations of the macro depending on argument count and if it returns void.

 

All Togther

With the above systems on top of each other we end up with a system for runtime introspection of types in C as well as systems for converting between types in different languages. We even have the ability to call arbritary C functions with argument data in a different language. With all the heavy macro use it might not be seen as a pretty solution but I hope after explaining the internals it is clear that there isn't anything too horrible going on - and most of it is just to save typing.

If you want any more in depth information then looking through the source code is probably a good bet. Otherwise feel free to contact me.

github twitter rss